Olof Bergvall

post doctoral at Department of Mathematics

+4618-471 3213
Visiting address:
Room ÅNG 14266 Lägerhyddsvägen 1, Hus 1, 6 och 7

Postal address:
Box 480
751 06 UPPSALA

Short presentation

I am a post doc at the department of mathematics. My research is in algebraic geometry.

My undergraduate education is from KTH, Engineering physics and I did my PhD at Stockholm University. After my defense I spent some time as a post doc at the Humboldt University in Berlin and I also worked as an assistant professor at SU.

See also my web page.

Also available at

My courses


This paragraph is not available in English, therefore the Swedish version is shown.


  • 2018 VT: Linjär algebra II, UU, Föreläsningar.
  • 2017 HT: Algebra och geometri, UU, Lektionsledare.
  • 2017 ST: Förberedande kurs i matematik, SU, Kursansvarig.
  • 2017 VT: Utmanande matematik, SU, Kursansvarig.
  • 2016 VT: Algebra och Kombinatorik, SU, Distansundervisning.
  • 2015 HT: Algebra och Kombinatorik, SU, Föreläsningar.
  • 2015 VT: Algebra och Kombinatorik, SU, Rökneövningar och Handledning.
  • 2014 HT: Commutative Algebra and Algebraic Geometry, SU, Exercise Sessions.
  • 2014 HT: Algebra och Kombinatorik, SU, Räkneövningar och Handledning.
  • 2014 HT: Matematik I, SU, Distansseminarier.
  • 2014 VT: Linjär Algebra II, SU, Räkneövningar, Handledning och Distansundervisning.
  • 2013 HT: Linjär Algebra II, SU, Räkneövningar, Handledning och Distansundervisning.
  • 2013 VT: Matematik I, SU, Seminarium.
  • 2012 HT: Matematik D, SU, Föreläsningar.
  • 2012 VT: Matematik I, SU, Räkneövningar, Handledning och Seminarium.
  • 2011 HT: Förberedande Kurs i Matematik, SU, Distansundervisning.
  • 2011 HT: Matematik I, SU, Handledning.
  • 2010 VT: Analytiska Metoder och Linjär Algebra, KTH, Räkneövningar.


The core of my research is in cohomology of moduli spaces of curves, surfaces and abelian varieties but I also sometimes think about arrangements, in particular arrangements of tori.


  1. Equivariant Cohomology of the Moduli Space of Genus Three Curves with Symplectic Level Two Structure via Point Counts, European Journal of Mathematics, Forthcoming, Journal, arXiv.
  2. The equivariant Euler characteristic of A_3[2], med Jonas Bergström, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Forthcoming, arXiv.
  3. Equivariant cohomology of moduli spaces of genus three curves with level two structure, Geometriae Dedicata, Forthcoming, Journal, arXiv.
  4. Cohomology of the toric arrangement associated to A_n, Journal of Fixed Point Theory and Applications, 2019, 21:15, Journal, arXiv.
  5. Cohomology of arrangements and moduli spaces, Doktorsavhandling, Stockholms universitet, 2016, DiVA.
  6. Cohomology of the moduli space of curves of genus three with level two structure, Licentiatavhandling, Stockholms universitet, 2014, DiVA.


  1. Cohomology of moduli spaces of Del Pezzo surfaces, with Frank Gounelas, 2019, arXiv.
  2. Cohomology of Complements of Toric Arrangements Associated to Root Systems, 2016, arXiv.


  1. Relations in the tautological ring of the universal curve, 2011, Link.


Please contact the directory administrator for the organization (department or similar) to correct possible errors in the information.