Frank Johansson

professor at Department of Ecology and Genetics, Animal Ecology

+4618-471 6488
Visiting address:
Evolutionsbiologiskt Centrum EBC, Norbyv 18 D
Postal address:
Norbyv 18 D
752 36 UPPSALA

Short presentation

In my research I focus on the evolution of phenotypic plasticity and local adaptation of population and species in response to environmental changes. I use dragonflies, frogs and fish as my model organisms, and I focus on life history traits and neutral genetic markers. Currently I running five projects, see biography below.

Also available at

My courses



Cryptic genetic variation and adaptation in novel environments

The aim is to understand cryptic genetic variation and adaptation at range margins. Cryptic genetic variation (the dark matter of biology), is variation that is normally not expressed, but is released when the organism encounters a novel environment. In stable environments, selection generally stabilizes towards an optimum that might not be optimal at novel environments. Nevertheless, most organisms are capable of quite fast adaptation to novel environments, and cryptic genetic variation is a potential explanation for this puzzling observation. Life history and morphological traits, and gene expression will be studied in a damselfly system, and a mixture of field experiment, laboratory experiment and molecular methods are being used.

Evolutionary ecology of colour communication in sexual selection and predator-prey interactions

In this project we explore the eco-evolutionary processes driving colour visual communication evolution in natural systems. We study the possible coevolution of colour signals and colour vision at the intraspecific and interspecific levels. Damselflies of the genera Calopteryx is our focus species, but we also study interaction in a food web using flies and birds with respect to colour vison.

Potential impact on five common pesticides on aquatic biodiversity

The aim of this project is to examine the biological effects of common pesticides that occur in levels above the guideline values for Swedish surface water. We do with traditionally LC50 test, new developed test performed in an ecological context and a strong focus on the combined (“cocktail”) effects of the pesticides. We are using damselflies and other insects which occur in the agricultural landscape.

Urban ponds: the relationship between biodiversity and socio- economic factors

The goal of this project is to show how pond variables, land use variables and socio- economic factors can be used to predict biodiversity in urban ponds. A survey of ponds in the city area of Stockholm is used as our study system.

Potential responses to climate change: from genotype to community level

In this research we are characterizing intraspecific and interspecific genetic variation in life history traits at different temperature scenarios in aquatic insects (damselflies). Given the predicted increase in mean global temperature, such knowledge is important for predictions on species abundance and distribution in the future, because evolutionary responses require genetic variation among individuals. Some of the questions we are answering are: 1) Is there less genetic variation at range margins compared to the center of a species’ distribution? 2) Are northern species more vulnerable to climate change than southern species? 3) How do community interactions affect the predicted life history response obtained from single species laboratory experiments?

My research is funded by The Swedish Research Council, Oscar and Lili Lamms Foundation, Uppsala University, and Olle Engqvist foundation

Contact: frank.johansson[at]


Warren Kunce

Post docs

Yvonne Meyer-Lucht

Former lab members

Malgorzata Blicharska

Tomas Brodin

Helena Johansson

Martin Lind

Dirk Mikolajewski

Viktor Nilsson-Örtman

David Outomuro

Zlatko Petrin


Please contact the directory administrator for the organization (department or similar) to correct possible errors in the information.