Alex Aperis

forskare vid Institutionen för fysik och astronomi, Materialteori

E-post:
alex.aperis[AT-tecken]physics.uu.se
Besöksadress:
Ångströmlaboratoriet, Lägerhyddsvägen 1
Postadress:
Box 516
751 20 UPPSALA

forskare vid Institutionen för fysik och astronomi, Materialteori

E-post:
alex.aperis[AT-tecken]physics.uu.se
Besöksadress:
Ångströmlaboratoriet, Lägerhyddsvägen 1
Postadress:
Box 516
751 20 UPPSALA

Kort presentation

Detta stycke finns inte på svenska, därför visas den engelska versionen.

A condensed matter theorist with a background knowledge (PhD) in many-body theory, statistical and computational physics. My expertise is on Eliashberg theory, competing and coexisting quantum states of matter and the realistic modeling of superconducting materials. I am the developer of the Uppsala Superconductivity code (UppSC) that interfaces ab initio and state-of-the-art Eliashberg theory numerical calculations and provides material specific predictions of superconducting properties.

Mina kurser

Forskning

My research combines the use of both mathematical and numerical methods. This includes Green function diagrammatic approaches like for example the use and development of Eliashberg theory but also writing code for performing computationally demanding numerical simulations in conjunction with ab initio methods. Specifically, my developed Uppsala Superconductivity code (UppSC), interfaces ab initio calculated properties of materials with state-of-the-art Eliashberg theory numerical calculations in order to provide quantitative, material specific predictions of superconducting properties. The output of the code can be used to simulate several experimental quantities like e.g. ARPES and tunneling spectra. A presentation of the code and a list of its capabilities can be found here.

I am particularly interested in the microscopic mechanism(s) of high temperature superconductivity (e.g. phonon and/or spin fluctuation mediated etc), unconventional superconductivity (including pair density waves), its competition or coexistence with other quantum states of matter (like e.g. Charge/Spin Density Waves and nematicity) and the resulting phenomenology and possible technological applications.

Other topics of current interest include topological materials like topological insulators and Dirac semimetals and specifically the theoretical identification of such topological states coexisting in a single topological material.

Examples of systems that I have worked on are,

2D materials like MgB2 and H-MgB2 monolayers, heterostructures like FeSe/SrTiO3, high-Tc and multiband superconductors like the iron based superconductors and MgB2 and heavy fermions like CeCoIn5, URu2Si2.

From the Press:

Publikationer

Kontakta katalogansvarig vid den aktuella organisationen (institution eller motsv.) för att rätta ev. felaktigheter.